SOCIAL CAPITAL, R&D AND INDUSTRIAL DISTRICTS
Giulio Cainelli, Susanna Mancinelli, Massimiliano Mazzanti

Working Paper n. 17
Maggio 2005

in collaborazione con

Giulio Cainelli
Università di Bari e CERIS-CNR, Milano

Susanna Mancinelli
Università di Ferrara

Massimiliano Mazzanti
Università di Ferrara

Informazioni:
Facoltà di Economia di Forlì - Corso di Laurea in Economia delle Imprese Cooperative e delle ONP
Tel. 0543-374620 – Fax 0543-374618 e-mail: nonprofit@spfo.unibo.it website: www.ecofo.unibo.it
Social Capital, R&D and Industrial Districts

Giulio Cainelli♣, Susanna Mancinelli♦ and Massimiliano Mazzanti♠

Abstract

The main idea behind this paper is that social capital is not, as generally suggested by the socio-economic literature, an individual attitude towards something which does not imply privately appropriable economic benefits. Actually, SC might and should be interpreted as a public component of an investment which implies private and public benefits entangled with each other. In order to put forward this idea, a dynamic theoretical model that assumes social capital as the public component of the impure public good R&D is developed. It shows that the ‘civic culture’ of the district area in which the firm works is not sufficient as an incentive to increase its investment in social capital, because this investment strictly depends on the economic convenience of investing in the impure public good. Social capital/networking dynamics might positively and complementary evolve only if the opportunity cost of investing in innovation is sufficiently low.

We consequently focus our attention on a specialized industrial district located in the Emilia Romagna region – the biomedical district of Mirandola (Modena) – characterised by a strong pattern of innovative activity. Using a proxy for innovative activity as dependant variable, we observe that R&D and networking/social capital arise as complementary driving forces for innovation outputs. When empirical evidence confirms that this complementarity plays key role, and consequently strong links exist between market and non-market dynamics relating to firms, the role for policy actions targeted to social capital is larger. The policy effort should be targeted toward both market and non-market characteristics taken together, rather than solely to the production of (local) public goods (social capital) or innovation inputs as independent elements of firm processes. The input of SC alone is not sufficient to ensure innovation and growth: economic incentives matter. On the other hand, whenever SC dynamics are crucial for R&D private investments, the effect of economic incentives depends on the presence and degree of their complementarity.

JEL: O32, D92, H49

Keywords: Social capital, R&D, technological innovation, industrial districts

♣ University of Bari and CERIS-CNR, Milan; mail: g.cainelli@ceris.cnr.it
♦ University of Ferrara; mail: mancinelli@economia.unife.it
♠ University of Ferrara; mail: mazzanti@economia.unife.it
1. Introduction

The main idea behind this paper is that social capital (SC hereafter) is not, as generally suggested by the socio-economic literature, an individual attitude towards something which does not imply privately appropriable economic benefits, as it is for a pure public good. Actually, SC might and should be interpreted as a component of an investment which implies private and public benefits entangled with each other.

In order to put forward this idea, a dynamic theoretical model is developed, that assumes SC as a public component of an impure public good: i.e. R&D. This theoretical model shows that, assuming complementarity between SC and R&D, the ‘civic culture’ of an industrial district is not sufficient as an incentive, to increase investments in SC by any single firm joining the district, because this investment also depends on the economic convenience in investing in R&D.

The subsequent empirical analysis allows us to assess the degree of such complementarity between SC and R&D, in a specific district-based industrialised context, using original survey data. In particular, we focus our attention on a Marshallian industrial district located in the Emilia Romagna region – the biomedical district of Mirandola (Modena) – which is characterised by strong innovative activity. Using original survey data on firm innovation practices, investment strategies, and cooperation efforts concerning firm relationship and networking within and outside the district, a complementary positive effect between SC and R&D investments is detected, estimating different econometric specifications of an innovation equation.

A main conclusion of the paper is that if and only if the economic conditions, which determine a favourable environment for the investment in the impure public good, improve, investments in SC by district firms are likely to increase. SC/networking dynamics may only positively evolve if the opportunity cost of investing in innovation is sufficiently low.

The paper is organized as follows. In section two, we comment on and describe some of the main results of the recent SC literature. The most relevant definitions are presented and discussed. Hence a conceptual framework for SC is provided, essentially based on the concept of ‘intensity of networking activities’ concerning network-involved agents. The framework largely draws upon works of impure public good production and non-cooperative agreements. In section three, a theoretical model is presented, wherein the accumulation of SC is assumed as the public component of the impure public capital R&D, and the main implications of the
model are discussed. In section four, we present our empirical exercise. Estimating an innovation equation, we detect a positive rapport between the intensity of SC (measured by a firm’s specific index of cooperative intensity within the district) and the level of innovative actions observed. Moreover, R&D and SC/networking arises as complementary driving forces behind innovative activity. The last section concludes the paper.

2. Social capital: a framework for theoretical and empirical analysis

The main problem concerning the economic analysis of what has been termed ‘SC’ is that the literature is strongly heterogeneous, and the notion of SC is not always clearly assessed and described to be operative on theoretical and applied grounds. This is probably caused by the past emphasis on inter-disciplinary research, which has characterised the SC arena over the nineties, and was definitely necessary in the initial phase to generate a conceptual and theoretical debate. Some definitions are nevertheless too sociologically biased; others are still too vague. Our first goal was thus to extract from the literature the definitions we retain consistent, then present our own framework.

Among the various definitions we came across in the literature, the following are the most relevant for defining the boundaries of the issue in question: (i) “A variety of different entities with two factors in common: they all consist of some aspects of social structure, and they facilitate certain actions – whether personal or corporate actors – within the structure” (Coleman, 1988); (ii) “Those features of social organization, such as trust, norms, and networks that can improve the efficiency of society by facilitating coordinate actions” (Putnam, 1993); (iii) “A glue that holds societies together” (Serageldin, 1996).

Taking into account the above definitions, SC is possibly identifiable with the ‘culture’ of a group of agents, a culture of economic reciprocity and cooperation. More generally, two key issues arise up from the socio-economic literature, those of ‘trust’ and ‘ease of cooperation’.

Paldam (2000) specifically provides meanings revolving around the notion of trust, cooperation and network. The author correctly defines SC as the glue generating excess cooperation; we here add ‘in excess’ with respect to an equilibrium intended in a Cournot-Nash meaning. Trust and ease of cooperation are two factors that simultaneously interact in the production of private and public goods, or forms of capital.

We argue it is essential to move away from ‘associative’ based concepts of SC as presented in Robison et al. (2002) and Putnam (1993), and from analysis of trust and cooperation relying on
‘honesty’ treated as a sort of public good, toward frameworks where SC is conceived as an intangible capital stock with some public good-like properties worth investigating further.

Theoretically speaking, SC may be included in a production function together with other inputs, linked with them to a different degree of complementarity. The effects of SC must be therefore analysed according to the shape of cost functions, returns to scale, factor productivity, market and shadow prices of capital investments.

A contingent definition of SC emerges strictly linked to the concepts of trust and cooperation presented above: SC is an intermediate capital good privately and intentionally produced, which endogenously accumulates from the flow of agents investments in voluntary cooperative effort. SC might be also conceived as the stock of the public component of an impure-public good, sustained by a set of private incentives. Its ‘production’ and accumulation are self-enforcing and sustained by reciprocal benefits of cooperation (Mancinelli and Mazzanti, 2004; Galassi and Mancinelli, 2004).

It is clear that the above definition hints at a microeconomic approach, differentiating the present analysis from that mostly found in the literature so far. It thus lies within the ‘narrow’ definition of SC, following the World Bank (1997) terminology for microeconomic approaches1, in opposition to wider meso and macro approaches.

As far as the capital-like properties are concerned, SC as defined above has a transformation capacity, in the sense that its accumulation is targeted toward the production of other forms of capital (man made or organizational) or final outputs2. It endures as long as incentives exist to sustain it. In our case, the degree of durability is such that the stock elapses with the cooperative agreements established for specific objectives. Then, the breaking down of a coalition ends the value of the stock. Furthermore, SC accumulates or de-cumulates depending on the structure of individual incentives (benefits and costs), and it is subject to decay as a renewable ‘collective resource’. In fact, decay depends on endogenous factors such as easy riding (non consistent

1 Wherein SC is included and studied as the ‘missing link’, or residual and intangible capital factor, in explaining growth and development of economic systems. This is the ‘orthodox’ approach to SC within economics. SC is the fourth form of capital, after man made, natural and human capital, in other words the ‘glue’ that (i) may enhance other factor’s productivity, (ii) reduces problems associated to ‘common property resources’ and (iii) generically helps development to occur on a sustainable basis (Cote and Healy, 2001). For a heterodox view on SC see Fine (2001).

2 The definition of SC as a stock of intangibles is not a completely shared vision. For instance, Arrow (1999) and Solow (1999) sharply conclude that the emphasis on capital is probably misplaced. SC derives instead from an association to the concept of human capital. In their view, the fact that factors such as trust, cooperativeness, and propensity to invest in a common effort have on the one hand a clear cut effect on total productivity, but on the other hand economics cannot consistently deal with SC as a proper form of capital. Other authors (Stiglitz, 1999) are more in favour of the SC consistency within economics.
actions of investment between agents) and on exogenous factors; investment flows are thus necessary to maintain the stock. Contrary to Sandler’s analysis of intergenerational club goods (Sandler, 1982 and 1992), depreciation occurs because of a lack of strategic investment (reduced investment) in cooperation at any time \(t \), rather than as a direct consequence of capital ‘use’ (crowding externality). In other words, depreciation derives from ‘non use’ rather than excessive use, as for many forms of collective manmade capital. Depreciation reflects the fact that much of SC investment is community-network specific.

The only capital-like property SC lacks is alienability, since we have shown that the stock of SC is intrinsically a relational dependent stock, consistent with Coleman’s vision. It is not owned by individual agents or by the agents as a group, it is ‘asset specific’ and an instrument for the alliance purposes. Nevertheless, we argue that ‘inalienability’ is the main specificity of SC indented as an intangible real asset. Inalienability is linked to non-marketability, in that agents invest in some imperfectly observable assets: in respect to investment decisions, costliness and imperfect observability are the main factors responsible for the systemic easy riding. Thus, in respect to our definition, is SC a real form of (intangible) capital? We believe it is.

Moreover, in the definition proposed above SC is not simply considered as a public good, but as the public component of an impure public good\(^3\), in which agents invest.

For instance, the environment faced by firms located within an industrial district may be depicted as follows: on the one hand, a firm has the option of investing either in standard technology or in incremental innovations which do not require cooperative efforts (the firm internalises investments and associated returns). Both options may be termed as ‘Business as Usual’ (BAU) scenarios. On the other hand, the firm may invest in R&D which implies innovations that involve structural breaks from the BAU (discrete changes concerning technological/organisational development) and that involve the concepts of skill, knowledge and competences, which are only partially owned by the firm. In this case, the innovation change usually requires a cooperative effort, and the investment may be thought of as one in an impure public good, that is each unit of investment produces some percentage units of private

\(^3\) In the economic literature, an impure public good, or mixed-public good, is a good which jointly gives private and public benefits. A typical example is that of an individual who, by being inoculated against an infectious disease, confers both a private benefit on himself and a public benefit by reducing the risk of spreading the disease through the community. In this case inoculation is the impure public good. The definition of impure public good well applies “to an activity like philanthropy, where charitable activities provide private as well as public benefits to contributors” (Cornes and Sandler, 1984, p. 580). “The acquisition of certain types of education is often asserted to have benefits for society at large, in addition to purely private benefits generated for students. […] The acts of charity and of saving and the activities of military alliances are a few of the many instances that have been claimed as examples of the joint production of both a public and a private benefits.” (Cornes and Sandler, 1986, p. 115).
benefits and some percentage units of public benefits. Private benefits are, for instance, technological amelioration appropriable by the firm and public benefits derive from the cooperative agreements among firms.

The framework highlights the fundamental need for agents to join their efforts to achieve benefits which derive from and build on public-like forms of investments. The most common and relevant benefit deriving from firm cooperation is that associated to the development of technological (process and product-based) innovations. This necessary joint effort to establish voluntary cooperative schemes, to achieve goals specific to the network but appropriable by participants, characterises most forms of (i) voluntary agreements, (ii) inter-firms intra district cooperation, (iii) inter-firms inter-districts cooperation. The relevance of points (i)-(iii) as engines for innovation and growth at a regional level has increased over the last decades, following both the less prominent role of the State as ‘regulator’ (top down approach), and the reshaping of governance and business strategies within the post-fordist society. Indeed socio-economic changes occurring in the post fordist (post-industrial) era shift the focus of interest from man made forms of capital to human, environmental and SC assets. Furthermore, market and non-market ‘horizontal’ networks play a major role with respect to ‘vertical’ and hierarchical relationships, creating a new scenario described by a cultural change in local and national production. The community benefits from positive network externalities. Nevertheless, in contrast o pure exogenous spillovers, the voluntary and intentional production of joint social benefits is costly: therefore incentives are crucial.

The public element of welfare function of one firm participating in the network agreement is, in our framework, the stock of SC on which the decision of action relies. SC is nevertheless strictly connected to private components of welfare (it is not a pure ‘independent’ public good), by a complementarity relationship.

It is worth underlining the voluntary element of the agreements in cooperation and production: SC is self-enforcing, self-financing, in opposition to third-party enforcement frameworks. Thus, we may say that our SC environment belongs to a Coasian-like framework characterised by horizontal relationships, in opposition to third-party enforcement pigouvian-like institutional frameworks.

As far as the measurement of SC is concerned, there are three main ways of approaching SC quantification at microeconomic level: by using (i) regional/national official datasets; (ii)

4. We do not follow the macro-economic direction, which has dominated until recently the empirical measurement of SC, for two reasons. First, the conceptual focus is here strictly microeconomic. Secondly, the weaknesses of that
revealed preference approaches (observing agent’s behaviour), which includes both quantifying by observing choices (i.e. investment choices, participation rates, etc.); (iii) stated preferences methods (directly revealing behaviour when observation is difficult or we lack behavioural ‘tracks’), which include quantifying SC by direct methods (i.e. interviewing economic agents).

The main obstacle in using the first method, generally less costly, is that SC features are usually non-market and non-accounted in regional and national dataset\(^5\). Thus, the only consistent way to elicit the SC private and public characteristics is often by implementing survey-based approaches aimed at eliciting specific information by structured questionnaires. The questionnaire should attempt to gather information consistent with conceptual definitions, by recovering data on SC factors, R&D dynamics and other firm-specific factors possibly affecting innovation, which we may use as “control” variables.

The next sections present (i) the theoretical model, which further defines the conceptual environment of the work, then (ii) the empirical investigation of the relationship between R&D and SC and their role in fostering innovation.

\(^5\) For this reason, most studies on SC using official data adopt SC proxies, which lack robustness in terms of conceptual and /or theoretical foundations. See, among the others, Guiso, Sapienza and Zingales (2000) who introduce some ad hoc SC proxies as determinants of financial development.
3. The model

In the analysis set out in the previous section, SC does not emerge as an individual attitude towards something which implies only public benefits; by contrast, SC emerges as the public component of an investment which implies a share of privately appropriable benefits.6

The aim of this section is to analyse the accumulation of SC by district firms, through the development of a dynamic theoretical model where SC is assumed to be the public component of an impure public good – the R&D investment – following the example depicted above.

The analysis builds up and brings together the contributions given by Cornes and Sandler (1984, 1986) and Glaeser et al. (2002), in an attempt to shape an original framing.

3.1 Firms belonging to an industrial district

We assume that there exists an industrial district composed of \(N \) firms.7 Each firm invests in two kinds of capital, \(y_i \) and \(R_i \); \(y_i \) has mere private characteristics and \(R_i \) has the characteristics of an impure public good. It has (produces) either a private characteristic, \(z_i \) (which has no effects on the other firms) and a public characteristic, \(s_i \) (which has effects also on the other districts). The investment in the private kind of capital, \(y_i \), can represent an investment in a BAU (‘business as usual’) capital stock, and the investment in the ‘impure public’ capital, \(R_i \), can represent an investment in R&D. In this case we can take as example of the private component, \(z_i \), the technological amelioration appropriable by the firm, and as example of the ‘public component’, \(s_i \), the formation of voluntary and self enforcing agreements among firms.

Therefore, the public component, \(s_i \), is consistent with the definition of SC presented in section two. Actually, \(s_i \) is an intermediate capital good produced privately and intentionally, which endogenously accumulates from the flow of agents investments in voluntary cooperative effort; and it is also the public component of an impure-public good.

Since \(R_i \) has the characteristic of an impure public good, each unit of investment by the firm \(i \) in \(R_i \) is such that:

\[
(1) \quad z_i = \alpha_i R_i \quad 0 \leq \alpha_i \leq 1 \text{ given}
\]

6 The idea that investment in SC is linked to economic factors, which imply private benefits, has already been investigated in other works (Galassi, 2001).
7 Each firm is indexed by the subscript \(i = 1, \ldots, N \).
8 Notice that we do not deal with club goods because here the size of the community (network) consuming the public good is exogenously fixed. This characteristic (community size) does not appear explicitly in the analysis.
\[
\begin{align*}
(2) \quad s_i &= \beta_i R_i \quad 0 < \beta_i \leq 1 \text{ given} \\
\text{Where } \alpha_i \text{ and } \beta_i \text{ are exogenously given coefficients reflecting a simple process, whereby } z_i \text{ and } s_i \text{ are jointly generated in fixed proportion by the investment in } R_i.
\end{align*}
\]

We are hence assuming that whenever a firm invests in one unit of \(R_i \) she invests in \(1/\alpha_i \) given units of a private characteristic and in \(1/\beta_i \) given units of SC. That is whenever a firm invests in one unit of \(R_i \), her investment is to percent an investment in a private asset and to some percent an investment in SC.

Moreover, since \(s_i \) exerts effects also on the other firms inside the industrial district and vice versa, we define:
\[
(3) \quad S_{\alpha i} = \sum_{j \neq i} s_j = \sum_{j \neq i} \beta_j R_j \quad \forall i, j
\]

and:
\[
(4) \quad S = \sum_{i=1}^{N} s_i = \sum_{i=1}^{N} \beta_i R_i = s_i + S_{\alpha i}
\]

The whole quantity of the public characteristic \((S)\) is given by the sum of the single contributions by any firm.

We adopt the Nash-Cournot assumption that the single firm \(i \) regards \(S_{\alpha i} \) as exogenously given.

From equations (1), (2), (3) and (4) the investment of firm \(i \) in one unit of \(R_i \) has therefore three effects: (i) an increase in \(i \)'s private benefits due to the private characteristic, \(z_i (=\alpha_i R_i) \); (ii) an increase in the total amount of the public component available to any firm inside the network \((S = s_i + S_{\alpha i}) \); (iii) an increase in \(i \)'s private benefits due to the public characteristic \((s_i + S_{\alpha i}) \).

Hence, we can define firm \(i \)'s benefit function of the investment in the impure public capital, \(R_i \) as:
\[
(5) \quad B_i = B_i \left[(S_{\alpha i} + s_i)z_i, I_{R_i} \right] \quad \forall i
\]

and, from equations (1) and (2) it can be written as:
\[
(6) \quad B_i = B_i \left[(\beta_i R_i + S_{\alpha i})\alpha_i R_i, I_{R_i} \right] \quad \forall i
\]

\[9\] Notice that, by equation (2) we assume that \(s_i \) can never be zero, because we suppose that each firm inside the district invests at least a minimum positive amount in "networking" and establishes even the simplest form of contacts or agreement. We are, hence, assuming that district firms are already investing in SC.
Since, from equation (6) firm i's benefit function depends on the firm i's choice concerning the investment R_i-related flow variable (I_{R_i}), on the consequent choice on the stock variable (R) and on the other firms choice concerning $S_{\neq i}$, it can also be expressed as follows:

$$B_i \left(S_{\neq i} + s_i, I_{R_i} \right) = B_i \left(\beta_i R_i + S_{\neq i} \right) \alpha_i R_i, I_{R_i} \right) = V_i \left(R_i, I_{R_i}, S_{\neq i} \right) \quad \forall \, i$$

We assume that firm i's benefit function is continuous, strictly increasing, strictly quasi-concave, and twice differentiable with respect to all its arguments.

We can define the investment cost function of any firm i regarding the impure public capital R_i as:

$$C_i = C_i \left(I_{R_i} \right) \quad \forall \, i$$

with $C'_i(.) \geq 0$, and $C''_i(.) \geq 0$.

Since the variation of R_i stock in time is:

$$\frac{\partial R_i}{\partial t} = \frac{\dot{R}_i}{R_i} = I_{R_i} - \delta R_i \quad \forall \, i$$

where δ is the exogenous depreciation factor, we can write the firm's investment cost function in R_i as:

$$C_i = C_i \left(R_i + \delta R_i \right) \quad \forall \, i$$

Moreover we assume that firms are symmetric: they have identical investment cost functions, and we assume that the opportunity cost of the impure public capital R_i is r (that is the value of the private capital, y).

From equations (7), (9) and (10), the problem of each district firm can be expressed as the typical problem of the determination of the optimal control path ($I_{R_i}^*(t)$) and of the optimal state path ($R_i^*(t)$).

Since we have assumed that R_i is an impure public capital, that is it jointly produces a private characteristic, z_i, and a public characteristic, s_i, we can assert, following Cornes and Sandler (1984, 1986), that the two characteristics, z_i and s_i, are complements. Therefore an increase in
one of the two characteristics increases the benefits of increasing the other (Milgrom and Roberts, 1995). In terms of mixed-partial derivatives of firm i’s benefit function, complementarity between z_i and s_i can be expressed as:

$$\frac{\partial^2 B_i}{\partial z_i \partial s_i} \geq 0.$$

(11)

3.2 The accumulation of social capital inside an industrial district

We assume that each firm inside the industrial district has a known lifespan of T periods and that she discounts the future with the discount factor ρ.

Each firm wants to maximise her net benefit function, in the interval of time $[0, T]$:

$$\text{Maximize } \int_0^T \left\{ B_i \left[R_i, I_{R_i}, S_{ait}, \right] - r C_i \left[I_{R_i} \right] \right\} \rho^t dt$$

s.t.:

$$\dot{R}_i = I_{R_i} - \delta R_i.$$

Where the transversality conditions are: $R_i(0) = \bar{R}_i$, $R_i(T)$ free (\bar{R}_i, T given), and $\lambda(T)=0$.

From equation (2) and (7) firm i’s problem may be expressed also as:

$$\text{Maximize } \int_0^T \left\{ B_i \left[S_i + S_{ait}, \alpha_i R_i, I_{R_i} \right] - r C_i \left[I_{R_i} \right] \right\} \rho^t dt$$

s.t.:

$$\dot{R}_i = I_{R_i} - \delta R_i.$$

The Hamiltonian is:

$$H(t, R_i, I_{R_i}, \lambda) = \left\{ B_i \left[S_i + S_{ait}, \alpha_i R_i, I_{R_i} \right] - r C_i \left[I_{R_i} \right] \right\} \rho^t + \lambda(t)(I_{R_i} - \delta R_i)$$

From the second maximum principle condition (equation of motion for λ, $\dot{\lambda} = -\frac{\partial H}{\partial R_i}$), we get:

$$\lambda^*(t) = \left[\frac{\partial B_i}{\partial (S_i + S_{ait})} \beta_i + \frac{\partial B_i}{\partial R_i} \alpha_i \right] \left(e^{-\rho t} - e^{-(\rho + \delta)t + \delta t} \right).$$

(12)

10 For each firm, R_i is the state variable and I_{R_i} is the control variable.
Substituting in the first maximum principle condition \(\frac{\partial H}{\partial I_{R_i}} \), we have:

\[
\frac{\partial}{\partial I_{R_i}} e^{-\rho t} \left[\frac{\partial B_i(\cdot)}{\partial I_{R_i}} - r \frac{\partial C_i(\cdot)}{\partial I_{R_i}} \right] + \frac{\partial B_i(\cdot)}{\partial (s_i + S_{\omega i})} \beta_i + \frac{\partial B_i(\cdot)}{\partial R_i} \alpha_i \frac{\partial}{\partial R_i} (e^{-\rho t} - e^{-(\rho + \delta)(t + \delta)}) = 0
\]

Equation (13) represents, the optimal control path \((I_{R_i}^*(t))\).

Differentiating (13) with respect to \(r\) we get:

\[
\frac{\partial^2}{\partial I_{R_i} \partial r} e^{-\rho t} \frac{\partial C_i(\cdot)}{\partial I_{R_i}} < 0
\]

That is, in each period \(t\) firm \(i\)'s optimal level of investment in \(R_i\) decreases at the increasing of the opportunity cost of \(R_i\).

Moreover, if we totally differentiate equation (13) with respect to \(s_i\) and \(S_{\omega i}\), we get\(^{12}\):

\[
\frac{ds_i}{dS_{\omega i}} = -\frac{\beta_i B_{iSS_{\omega i}}}{\beta_i B_{iS_{\omega i}} + \alpha_i B_{iR_{\omega i}}}
\]

The sign of the numerator of eq. (15) depends on the sign of \(\beta_i B_{iSS_{\omega i}} = \beta_i \frac{\partial^2 B_i(s_i + S_{\omega i}, \alpha_i R_i, I_{R_i})}{\partial(s_i + S_{\omega i})^2}\), which is certainly non-positive, since we have assumed the strictly quasi-concavity of firm \(i\)'s benefit function.

The sign of the term that appears in the square bracket at the denominator in equation (15) depends on the sign of \((\beta_i B_{iS_{\omega i}} + \alpha_i B_{iR_{\omega i}})\). Whereas \(\beta_i B_{iS_{\omega i}} = \beta_i \frac{\partial^2 B_i(s_i + S_{\omega i}, \alpha_i R_i, I_{R_i})}{\partial(s_i + S_{\omega i})^2}\) is certainly non-positive, \(B_{iR_{\omega i}}\) is nonnegative, since we have assumed that \(z_i\) and \(s_i\) are complementary, hence \(\frac{\partial^2 B_i}{\partial \alpha_i R_i \partial s_i} \geq 0\). Since the technological parameters, \(\alpha_i\) and \(\beta_i\), are independently determined, one cannot rule out the possibility that \(\alpha_i B_{iR_{\omega i}} > \beta_i B_{iS_{\omega i}}\). In this way, complementarity between \(z_i\) and \(s_i\) can produce, in each period \(t\), a positive response:

\(^{11}\) The analytical steps to get equation (12) are shown in Appendix 1.

\(^{12}\) Remind that: \(s_i = \beta_i R_i\) and \(S = s_i + S_{\omega i}\).
Hence, in the case depicted above \(\frac{ds_i}{dS_{ni}} > 0 \), the reaction curve may have positive slope: in this case, an increase in \(S_{ni} \) raises firm \(i \)'s benefits due to the public characteristic \((s_i+S_{ni})\), which, in turn, rises the single firm's marginal valuation for the complementary private characteristic \(z_i\). As a consequence, the single firm now wishes to increase her investment in \(R_i \). To do this, the single firm must increase her stock of \(R_i \) which has the effect of increasing \(s_i \) (via \(s_i = \beta_i R_i \)), her own generation of the public characteristic (SC).

The conclusion is that if the other firms’ investment in SC \((S_{ni})\) increases, also the single firm \(i \)'s investment in SC may increase. Hence a positive ‘culture’ in an industrial district may have positive effects on the investment of SC by the single firm.

But the increases of the investment in \(s_i \) pass through firm \(i \)'s investment in \(R_i \).

And from equation (14) we know that in each period \(t \) firm \(i \)'s optimal level of investment in \(R_i \) decreases at the increasing of the opportunity cost of \(R_i \).

Hence, whenever the opportunity cost of \(R_i \) increases, the single firm \(i \) reduces her investment in \(R_i \) and, as a consequence, she reduces her investment in SC.

From the third maximum principle conditions (equation of motion for \(R_i \), \(\dot{R}_i = \frac{\partial H}{\partial \lambda} \)) we get\(^{13}\) the optimal state path:

\[
\begin{align*}
R_i^*(t) &= \left(\bar{R}_i - \frac{I_{R_i}}{\delta} \right) e^{-\delta t} + \frac{I_{R_i}}{\delta} \\
\text{Substituting with } I_{R_i}^*: \\
R_i^*(t) &= \bar{R}_i e^{-\delta t} + \frac{I_{R_i}}{\delta} \left(1 - e^{-\delta t} \right)
\end{align*}
\]

From the results of the model we can deduce that if SC is the public component of an impure public capital, an increase of the other firms' investment in the public component (SC) may induce firm \(i \) to increase her own investment of the impure public capital \(R_i \), and, as a consequence, to increase her own investment of SC \((s_i)\). If we consider high levels of investments in SC by the district firms as strictly associated to the level of ‘civic culture’ of that district, the result of the model confirms what part of the literature on SC\(^{14}\) asserts. That is, the

\[^{13}\text{The analytical steps to get equation (17) are shown in Appendix 2.}\]

\[^{14}\text{We refer to that line of analysis which mainly stems from the famous contributions associated to the work of Fukuyama (1995) and Putnam (1993). The latter is indeed famous for a study on SC taking Italy as case study. The}\]
level of investment in SC by an individual economic agent is positively boosted by the civic culture of the geographic area in which the economic agent acts.

Nevertheless, as shown above, this virtuous circle happens only when the opportunity cost of the impure public capital is sufficiently low: if the opportunity cost of \(R_i \) is too high, the single firm will not increase her investment in \(R_i \), and as a consequence, will not increase her investment in SC, even if the availability of SC provided by the other firms is high.

Hence, if SC is definable as the public component of an impure public capital, the ‘civic culture’ of the district area to which the firm belongs is not sufficient to increase her investment in SC, because this investment depends also on the economic profitability in investing in the impure public capital. This is true for each firm inside the industrial district. Therefore, the whole level of investment in SC inside the district tend to be correlated to the costs of the economic actions. In the case depicted above, the higher the opportunity costs of R&D (conversely, the lower the profitability of innovation), the lower the stock level of SC.

As a conclusion, if and only if the economic conditions, which determine a favourable environment to the investment in the impure public capital, improve, it is possible to expect an increase of the investments in SC by economic agents. If SC is assessed as the public component of an impure public good which is a crucial intermediate capital good for firm performance and innovation practices, the incentive devices to invest in SC are also economic-biased, and they are not only linked to the ‘civic culture’ of the geographic area.

The aim of the following empirical analysis is to test the assumption of complementarity between SC and R&D in a specific Italian industrial district: the biomedical district of Mirandola (Modena). It is worth noting that the applied analysis is meant to be a first empirical test, circumscribed to the district under investigation, without the attempt of achieving any generalisation of results. A larger dataset referring to a sufficient number of industrial districts, and a panel structure would allow a more sophisticated econometric test. In this sense our empirical analysis is preliminary in scope, suggesting a direction for further research.

4. SC and R&D investments as complements: an empirical test
4.1 The data-set

The framework depicted above characterises different real-world situations where inter-firm cooperation is the primary and leading key to the successful performance of industrial districts. Along this line, networking is a capital good and an intermediate input to production. Although we underline that the present analysis is highly specific concerning the elicited data, recent works taking a similar perspective are, among the others, Cassiman and Veugelers (2002), Becker and Dietz (2004), Fritsch and Franke (2004), Negassi (2004). These papers deal with innovation activities, R&D cooperation and (knowledge) spillovers, taking different perspectives and research directions. Summing up, they attempt to identify what the determinants of R&D intensity, R&D cooperation and innovation activities are, by specifying diverse reduced forms. Building on that research, we here attempt to focus attention on the nexus of complementarity between networking and R&D as joint inputs for technological innovation.

Now let us show how we prepared and designed the case study analysis for the biomedical industrial district of Mirandola (Modena). The empirical identification of the manufacturing firms belonging to this industrial district was carried out taking into account two different dimensions: (i) productive specialization and (ii) geographic area in which firms are located. In regards to productive specialization, all the manufacturing firms belonging to the ATECO classes 33.10\(^{16}\) (Manufacture of medical and surgical equipment and orthopaedic appliances) were included in the sample. Concerning the localization area of the district, we took into consideration the following seven municipalities of the Provincia of Modena\(^{17}\): Mirandola, Medolla, Concordia, Cavezzo, San Felice sul Panaro, San Possidonio and San Prospero. The reason behind this choice is that these municipalities are associated with a concentration of biomedical firms. We identified the ‘biomedical district of Mirandola’ by taking into account only those firms that satisfied the following requirements: (i) operating in the sector 33.10 Manufacture of medical and surgical equipment and orthopaedic appliances and (ii) headquarters are located in one of the seven municipalities already listed.

\(^{16}\) Economic activity classes defined by the Italian National Statistical Institute (ISTAT).

\(^{17}\) Modena is a central Province of the Emilia-Romagna Region. Emilia Romagna is an area of Italy characterised by a high density of industrial districts, a GDP per capita (about 27000€ in 2003) higher than the Italian average and with four millions residents represents the 7% of the Italian population.
We then identified a universe population of district firms that was identified during an extensive research project carried out years ago on this district (Baracchi and Bigarelli, 2001)18. Interviews were held with firm managers over a two-months period (February-March 2004) on administering a short but structured questionnaire, in order to elicit data on innovation practice, R&D investment, and cooperation efforts concerning firm’s relationship and networking within and outside the local district. The selected period of reference is 2000-2002. As far as R&D data is concerned, it was reasonably possible to ask firms for annual data covering the years 2000 to 2002, while all questions regarding networking activities and innovation practices were set to determine a ‘trend’ over the 2000-2002 period19. We decided not to elicit information on performance to minimise the rejection rate; furthermore, survey data on performance is known to often lack reliability. The first section of the questionnaire deals with general features of firms, the second section focuses on innovation practice, the third section on networking activities. The final dataset accounts for 40 of the 70 firms making up the district ‘population’. Some firms refused to take part, most of the data losses derived from firm shutdowns, especially smaller establishments. As it turns out from Tables A.1, A.2, and A.3 in Appendix 3, the coverage rate of our dataset appears to be quite good. This is true both when considering all the firms (Table A.1), firms producing for final markets (Table A.2), and sub-contractors (Table A.3).

4.2 The empirical analysis

This section illustrates the econometric methodology used to empirically test the aforementioned complementarity between R&D and SC/networking. In order to perform this exercise, we estimate an innovation equation, which expresses the relationship between innovation output and innovation inputs within a ‘conceptual framework’ of a knowledge production function (Griliches, 1979; Fritsch and Franke, 2004). The estimable reduced form we use is:

18 We argue that the main added value of current empirical analysis on SC may derive from focused survey study eliciting specific and often ‘latent’ information which are not accounted for in market transaction and official data (i.e. Community Innovation Survey, national or regional statistics). With this respect, our analysis differs from studies using large, public but not focussed dataset (Cassiman and Veugelers, 2003).

19 This is a key problem for empirical analysis concerning innovation and SC dynamics, since such data are difficulty, if not impossibly, revealed on an annual basis by firms.
A brief description is necessary. $INN_{i,t}$ is a binary variable taking the value of 1 whether the firm i introduced product and/or process technological innovations over the 2000-2002 period20. RD_i is the Research and Development expenditure per employee of firm i.

In order to cope with endogeneity, we decided to use the 2000 value as independent variable proxy for R&D. NET_i is a variable capturing the networking effect concerning the SC oriented activity of firm i, which was addressed by a specific and focussed part of the questionnaire. More specifically, two different dummies are introduced: one is a specific proxy for SC, the other is a variable mainly capturing the information spillovers between district firms21. The first takes the value of one when a firm is associated to formal or informal networking relationships, dealing with production issues, innovation issues and market strategies. The second dummy takes the value of one if a firm exploits other firms belonging to the same district (exchanging flows of critical information)22 as a main source of information. The vector X_i includes a set of control variables (firm’s typology, size, age, and export propensity) which we included to better specify the vector of innovation inputs. Otherwise, the effect of R&D and networking could be overestimated. Finally, u_i denotes the error term with the standard statistical properties. It is worth noting that all the explanatory variables are expressed in natural logarithms.

Before showing and commenting the findings of the econometric investigation, we first present some results of the field survey (Tables 1 and 2) and then some descriptive statistics concerning the variables used (Table 3).

20 See Negassi (2004), among others, for a critical debate over the various innovation proxy measures, on the input and output side.

21 We observe that this second networking variable is weaker as SC proxy, compared to the first. It is included since it captures relevant firm networking aspects, mostly related to district-specific information spillovers. It may thus act as a sort of control variable, mitigating any problem of omitted information when the aim is to test the ‘direct’ effect of networking relationships.

22 See Cassiman and Veugelers (2002) for a discussion on the role of incoming (information) spillovers as an engine for R&D cooperation and, indirectly, for innovation.
Table 1 – Firm size and R&D

<table>
<thead>
<tr>
<th>Size classes</th>
<th>Firms N.</th>
<th>Firms %</th>
<th>Employees N.</th>
<th>Employees %</th>
<th>R&D per employee €</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-19</td>
<td>21</td>
<td>52.5</td>
<td>190</td>
<td>7.5</td>
<td>1,323</td>
</tr>
<tr>
<td>20-49</td>
<td>10</td>
<td>25.0</td>
<td>257</td>
<td>10.1</td>
<td>530</td>
</tr>
<tr>
<td>50-249</td>
<td>6</td>
<td>15.0</td>
<td>659</td>
<td>26.1</td>
<td>2,138</td>
</tr>
<tr>
<td>>249</td>
<td>3</td>
<td>7.5</td>
<td>1,424</td>
<td>56.3</td>
<td>6,017</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>100.0</td>
<td>2,530</td>
<td>100.0</td>
<td>4,097</td>
</tr>
</tbody>
</table>

Table 2 – Innovations and networking

<table>
<thead>
<tr>
<th>Size classes</th>
<th>Final firms %</th>
<th>Product innovations %</th>
<th>Process innovations %</th>
<th>Innovations %</th>
<th>Networking(^{(a)}) %</th>
<th>Networking(^{(b)}) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-19</td>
<td>90.9</td>
<td>38.0</td>
<td>38.0</td>
<td>57.1</td>
<td>85.7</td>
<td>28.6</td>
</tr>
<tr>
<td>20-49</td>
<td>50.0</td>
<td>20.0</td>
<td>20.0</td>
<td>30.0</td>
<td>30.0</td>
<td>10.0</td>
</tr>
<tr>
<td>50-249</td>
<td>100.0</td>
<td>83.3</td>
<td>83.3</td>
<td>83.3</td>
<td>100.0</td>
<td>0.0</td>
</tr>
<tr>
<td>>249</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>66.6</td>
<td>33.3</td>
</tr>
<tr>
<td>Total</td>
<td>60.0</td>
<td>45.0</td>
<td>45.0</td>
<td>60.0</td>
<td>72.5</td>
<td>20.0</td>
</tr>
</tbody>
</table>

\(^{(a)}\) This dummy takes value 1 if the firm is characterised by formal or informal networking relationships dealing with both production issues, innovation issues and market strategies.

\(^{(b)}\) This dummy takes value 1 if the firm exploits and receives critical information from agents belonging to the same district.

From analysis of Tables 1 and 2 it emerges (i) that the percentage of innovative firms in this industrial district is quite high and, (ii) that this tendency increases in accordance with the firms’ size. Taking into account the first networking variable, one notes that also in this case a high percentage of district firms are involved. The second networking variable instead does not show the same pattern. In fact, this latter networking factor, with the exception of small-sized firms, seems to be less widespread.

The R&D per employee increases by size, confirming the expected positive correlation between the two variables. In comparison, the Italian industrial R&D value (year 2000) elicited by the Third Community Innovation Survey is about 3000€ for only formalised R&D, and more than 8000€ including expenditures on innovative man-made capitals, skilled labour training and acquisitions of know-how.
Table 3 – Descriptive statistics (explanatory variables)

<table>
<thead>
<tr>
<th></th>
<th>N. OBS.</th>
<th>MEAN</th>
<th>STD. DEV.</th>
<th>MIN.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(employees)</td>
<td>40</td>
<td>2.996</td>
<td>1.435</td>
<td>0</td>
<td>6.526</td>
</tr>
<tr>
<td>Firm Typology (a)</td>
<td>40</td>
<td>0.6</td>
<td>0.496</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Firm Age (years)</td>
<td>40</td>
<td>13.8</td>
<td>8.811</td>
<td>2</td>
<td>34</td>
</tr>
<tr>
<td>Log(export/total turnover) in 2000</td>
<td>40</td>
<td>1.586</td>
<td>1.872</td>
<td>0</td>
<td>4.499</td>
</tr>
<tr>
<td>Dummy networking (b)</td>
<td>40</td>
<td>0.725</td>
<td>0.452</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Dummy networking (c)</td>
<td>40</td>
<td>0.2</td>
<td>0.405</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Log(R&D expenditure/employees in 2000)</td>
<td>40</td>
<td>3.193</td>
<td>3.880</td>
<td>0</td>
<td>10.183</td>
</tr>
</tbody>
</table>

(a) This dummy takes value 1 if the firm sells its products on the final market, 0 if the firm is primarily a sub-contractor.
(b) This dummy takes value 1 if the firm is characterised by formal or informal networking relationships dealing with both production issues, innovation issues and market strategies.
(c) This dummy takes value 1 if the firm exploits and receives critical information from agents belonging to the same district.

From the econometric point of view, the equation (19) estimation poses at least three problems. First, heteroskedasticity, as is often found when cross sectional data are used, may reduce the efficiency of econometric estimates. Thus, all estimates are carried out adopting a ‘robust’ estimator for the Logit model which addresses this source of bias. Secondly, there is a potential endogeneity of R&D in the regression. In fact, as many contributions have shown, a lagged impact effect between R&D input and innovation output is a general plausible assumption often verified by empirical assessment. We thus use the R&D data for 2000 as an explanatory factor for innovation over 2000-2002, introducing a ‘lagged’ term into the regression (thus specifying a hybrid cross sectional model).

Third, potential endogeneity may also affect the networking-related variables. According to some contributions on Italian industrial districts (Cainelli and Nuti, 1996; Brusco et al., 1996; Cainelli and Zoboli, 2004), this kind of formal and informal networking relationship, as well as information spillovers, may be interpreted as quasi-fixed factors of ‘production’, in any case slow evolving over time. This means that those variables can be considered as pre-determined factors, exogenous with respect to district firm innovative activity.

Let us now go back to the econometric findings. In Table 4, we report results for various specifications of (19). In particular, column [1] shows the reduced form when only control variables are included. In this case, all these explanatory variables result as non-significant.

Focussing on the extended specifications [2-6] we note that the impact of R&D and networking as inputs of innovation is highly significant. It is worth highlighting two points. First, both the networking dummy variables are statistically significant when included separately.

as added covariate to the control variables of (19) (columns [2] and [5]). Secondly, the two ‘inputs’ for which we hypothesise a complementarity nexus emerge statistically significant, when both are included (column [4] and [6]). This is an assessment of the joint/complementary driving stimulus provided by R&D and SC. Regressions [4] and [6] also show the two highest pseudo-R^2. Specifications [5-6] also show a significant effect of size. Size nevertheless does not arise a primary force behind innovation.

We may conclude this section summarising the outcome of the econometric exercise. SC investments, proxied by two variables concerning networking activities, emerge as a crucial driving force for innovation. Innovation is also triggered by expenditures in R&D, confirming ex ante expectations. Furthermore, and more important, SC/networking and R&D arise jointly determining technological innovation. The outcome is robust as confirmed by different econometric specifications of an innovation equation. Those aforementioned driving forces appear to overwhelm the effect of other explanatory factors of innovation, like firm size, which is usually found as a key driving force of innovation and high-performance practices. Only in considering the second networking variable, the variable capturing the market orientation of firms, firm size results as statistically significant in the regression. This finding, although circumscribed to the district observed, is in contrast to the predominant size effects often emerging from studies on innovation practices, and with other evidence, which also tends to reduce the emphasis on R&D cooperation with respect to size, market share and other firm-specific characteristics (Negassi, 2004). Further empirical evidence is thus necessary for a generalisation of results.

24 Similar considerations are put forward by Brynolfson et al., 2002 for organizational capital.
Table 4 – The innovation equation: estimates

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variable: innovation dummy (2000-2002)</td>
<td>LOGIT(1)</td>
<td>LOGIT(1)</td>
<td>LOGIT(1)</td>
<td>LOGIT(1)</td>
<td>LOGIT(1)</td>
<td>LOGIT(1)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.400</td>
<td>-3.090</td>
<td>-0.094</td>
<td>-2.934</td>
<td>-1.483</td>
<td>-1.673</td>
</tr>
<tr>
<td></td>
<td>[1.303]</td>
<td>[2.190]</td>
<td>[1.599]</td>
<td>[2.242]</td>
<td>[1.920]</td>
<td>[1.883]</td>
</tr>
<tr>
<td>Log (employees)</td>
<td>0.292</td>
<td>0.657*</td>
<td>0.175</td>
<td>0.488</td>
<td>0.687**</td>
<td>0.645**</td>
</tr>
<tr>
<td></td>
<td>[0.337]</td>
<td>[0.400]</td>
<td>[0.313]</td>
<td>[0.325]</td>
<td>[0.342]</td>
<td>[0.285]</td>
</tr>
<tr>
<td>Typology (c)</td>
<td>2.113</td>
<td>2.082</td>
<td>0.816</td>
<td>0.459</td>
<td>3.292**</td>
<td>1.627</td>
</tr>
<tr>
<td></td>
<td>[1.102]</td>
<td>[1.706]</td>
<td>[1.215]</td>
<td>[1.688]</td>
<td>[1.171]</td>
<td>[1.083]</td>
</tr>
<tr>
<td>Log (Age)</td>
<td>-0.503</td>
<td>-0.297</td>
<td>-0.613</td>
<td>-0.343</td>
<td>-0.985</td>
<td>-1.061</td>
</tr>
<tr>
<td></td>
<td>[0.586]</td>
<td>[0.669]</td>
<td>[0.778]</td>
<td>[0.825]</td>
<td>[0.752]</td>
<td>[1.031]</td>
</tr>
<tr>
<td>Log (export/total turnover) in 2000</td>
<td>-0.024</td>
<td>-0.311</td>
<td>0.163</td>
<td>-0.022</td>
<td>-0.170</td>
<td>0.186</td>
</tr>
<tr>
<td></td>
<td>[0.310]</td>
<td>[0.606]</td>
<td>[0.385]</td>
<td>[0.605]</td>
<td>[0.327]</td>
<td>[0.471]</td>
</tr>
<tr>
<td>Dummy networking (a)</td>
<td>…</td>
<td>2.350**</td>
<td>…</td>
<td>2.470**</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[1.162]</td>
<td></td>
<td>[1.063]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dummy networking (b)</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>3.776**</td>
<td>4.168**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[1.758]</td>
</tr>
<tr>
<td>Log (R&D expenditure/employee) in 2000</td>
<td>…</td>
<td>…</td>
<td>0.303**</td>
<td>0.319**</td>
<td>…</td>
<td>0.354**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[0.136]</td>
<td>[0.157]</td>
<td></td>
<td>[0.173]</td>
</tr>
<tr>
<td>N. Obs.</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Pseudo-R²</td>
<td>0.196</td>
<td>0.299</td>
<td>0.293</td>
<td>0.388</td>
<td>0.363</td>
<td>0.469</td>
</tr>
</tbody>
</table>

** significant at 5%; * significant at 10%

(1) Standard errors [in brackets] are computed with the White method in order to correct for heteroscedasticity.

(a) This dummy takes value 1 if the firm is characterised by formal or informal networking relationships dealing with production issues, innovation issues and market strategies.

(b) This dummy takes value 1 if the firm exploits and receives critical information from agents belonging to the same district.

(c) This dummy takes value 1 if the firm sells its products on the final market, 0 if the firm is primarily a sub-contractor.
5. Conclusions

Building on the literature on SC mainly developed during the last decade, the main aim of this paper was to explore new perspectives, based on a microeconomic approach. The analysis conducted, both theoretical and empirical, helps shed light on the ongoing SC debate, since it investigates the effective role of this capital input in stimulating innovative activity and thus economic performance.

Introducing a nexus of complementarity between R&D and SC, a dynamic theoretical model then has shown that when SC is the public component of the impure public good R&D in a district of firms, the ‘civic culture’ of the district area where the firm acts is not a sufficient explanatory factor to increase the firm investment in social capital, since this investment strictly depends also on the economic profitability (private opportunity costs) linked to innovative strategies involving firm cooperation. In other words, only if the economic conditions, which determine a favourable environment to the investment in the “impure public capital”, improve, we may expect an increase of investments in SC.

Empirical results confirm the nexus of complementarity between R&D and SC/networking activities, in assessing the effective role of this capital input in stimulating innovation and, consequently, economic growth. We focused our attention on a biomedical industrial district. Econometric analysis shows that R&D and SC/networking consistently arise as complementary inputs for innovation outputs.

It is worth noting that the main outcome arising from the theoretical and empirical analysis – the pivotal role of complementarity associated between R&D and SC/networking on the input side of the production-innovation process – influences the perspective concerning policy action. Whenever empirical evidence highlights this keystone complementarity (though further evidence is needed to generalise the result), consequently, strong links exist between market and non-market dynamics relating to firms, and the role for policy actions targeted to SC should be larger in spirit. The policy effort should be targeted toward both market and non market (i.e. R&D and SC) characteristics taken together, rather than an effort directed to the production of (local) public goods (SC) or innovation inputs as independent elements of firm’s specific processes. The difference is not purely speculative, but is important as far as policy effectiveness is concerned. In fact, we argue that SC/networking dynamics might positively evolve only if the private opportunity cost of investing in non-BAU innovation is sufficiently low. Nevertheless, this (exogenous) economic incentive works as long as complementarity, as here defined, holds. Otherwise, opportunistic behavior concerning cooperation for networking activities may
undermine the development of R&D and innovation, even when economic conditions are favourably evolving (i.e. decreasing opportunity costs). Moreover, SC/networking is not a sufficient driver, as some authors have suggested, for generating innovative behavior and better economic performances, in absence of favourable economic incentives. This perspective leads to new research lines, given the necessity of investigating what the opportunity cost threshold may be in a specific environment.

The results of the theoretical model may deserve further empirical analysis. Particularly, it will be helpful to compare the accumulation of social capital by firms joining districts situated in two different geographic areas characterized by different opportunity costs of investing in the impure public capital.

To conclude, we argue that more attention should be paid to causality links and endogeneity when dealing with the issue at both empirical and conceptual levels. We think that only a joint theoretical-empirical effort can provide benefit for the SC framework. Otherwise, there is a risk of focussing too much attention on an untested hypothesis as guidance for policymaking. We recommend further work on the applied direction, where there is a high possibility of providing new evidence stemming from specific and micro-oriented survey studies.
References

Baracchi M., Bigarelli D. (2001), Osservatorio sul setore biomedicale nel distretto mirandolese, Seconda rilevazione, Ricerche e Interventi di politica industriale e del lavoro (R&I), Carpi.

Fine B. (2001), Social Capital vs Social Theory: Political Economy and Social Science and the Turn of the New Millennium, Routledge, New York.

Appendix 1
(Equation of motion for λ).

The equation of motion for λ, $\ddot{\lambda} = -\frac{\partial H}{\partial R_i}$, is:

$$\ddot{\lambda} = -\frac{\partial H}{\partial R_i} = -e^{-\rho t} \left[\frac{\partial B_i \left(s_i + S_{\mu_i} \right)}{\partial (s_i + S_{\mu_i})} \beta_i + \frac{\partial B_i \left(s_i + S_{\mu_i} \right)}{\partial R_i} \alpha_i, R_i, I_{R_i} \right] + \delta \lambda(t)$$

from which:

$$\frac{\partial \lambda}{\partial t} - \delta \lambda = -\left[\frac{\partial B_i \left(s_i + S_{\mu_i} \right)}{\partial (s_i + S_{\mu_i})} \beta_i + \frac{\partial B_i \left(s_i + S_{\mu_i} \right)}{\partial R_i} \alpha_i, R_i, I_{R_i} \right] e^{-\rho t}$$

The complementary function is:

$$\lambda_c(t) = Ae^{\kappa} \quad (A \text{ arbitrary})$$

To find the particular integral we put:

$$\lambda' - \delta \lambda = -\left[\frac{\partial B_i \left(. \right)}{\partial (s_i + S_{\mu_i})} \beta_i + \frac{\partial B_i \left(. \right)}{\partial R_i} \alpha_i \right] e^{-\rho t}$$

and:

$$\lambda(t) = -De^{-\rho t}$$

$$\lambda'(t) = \rho De^{-\rho t}$$

$$\rho De^{-\rho t} + \delta De^{-\rho t} = \text{left side}$$

From which:

$$D = -\left[\frac{\partial B_i \left(. \right)}{\partial (s_i + S_{\mu_i})} \beta_i + \frac{\partial B_i \left(. \right)}{\partial R_i} \alpha_i \right]$$

$$\lambda_p = -De^{-\rho t}$$

The particular integral, hence, is:

$$\lambda_p = \left[\frac{\partial B_i \left(. \right)}{\partial (s_i + S_{\mu_i})} \beta_i + \frac{\partial B_i \left(. \right)}{\partial R_i} \alpha_i \right] e^{-\rho t}$$

The sum of the complementary function and the particular integral then constitutes the general solution of the complete equation:
\[\lambda(t) = Ae^{\beta t} + \left[\frac{\partial B_i(.)}{\partial (s_i + S_{wi})} \beta_i + \frac{\partial B_i(.)}{\partial R_i} \alpha_i \right] \left(e^{-\rho t} \right) \]

From the transversality conditions \((\lambda(T) = 0)\), we can assert that in \(T \):

\[0 = Ae^{\beta t} + \left[\frac{\partial B_i(.)}{\partial (s_i + S_{wi})} \beta_i + \frac{\partial B_i(.)}{\partial R_i} \alpha_i \right] \left(e^{-\rho t} \right) \]

from which:

\[A = - \left[\frac{\partial B_i(.)}{\partial (s_i + S_{wi})} \beta_i + \frac{\partial B_i(.)}{\partial R_i} \alpha_i \right] \left(e^{-(\rho + \delta)T} \right) \]

Hence, substituting in equation (1A), we get equation (12):

\[\lambda^*(t) = \left[\frac{\partial B_i(.)}{\partial (s_i + S_{wi})} \beta_i + \frac{\partial B_i(.)}{\partial R_i} \alpha_i \right] \left(e^{-\rho t} - e^{-(\rho + \delta)T + \delta} \right) \]
Appendix 2

(Equation of motion for R_i).

The equation of motion for R_i, $\ddot{R}_i = \frac{\delta H}{\delta \lambda}$, is:

$$\ddot{R}_i = \frac{\delta H}{\delta \lambda} = \frac{\delta R_i}{\delta t} = I_{R_i} - \delta R_i$$

The complementary function is:

$$R_c(t) = Ae^{-\lambda t}$$

and the particular integral is:

$$R_{ip} = \frac{I_{R_i}}{\delta} \quad (\delta \neq 0)$$

The sum of the complementary function and the particular integral then constitutes the general solution of the complete equation:

$$\dot{R}_i(t) = Ae^{-\lambda t} + \frac{I_{R_i}}{\delta} \quad (A \text{ arbitrary})$$

Moreover, by setting $t=0$ in this result, it is easily shown that $A + \frac{I_{R_i}}{\delta}$ represents the initial stock of $R_i (\ = \bar{R}_i)$.

Hence the optimal state path is:

$$R_i^*(t) = \left(\bar{R}_i - \frac{I_{R_i}}{\delta} \right) e^{-\lambda t} + \frac{I_{R_i}}{\delta}.$$
Appendix 3

Table A.1 – A comparison between sample and population (year 2000)

<table>
<thead>
<tr>
<th></th>
<th>POPULATION</th>
<th></th>
<th>SURVEY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N.</td>
<td>%</td>
<td>N.</td>
<td>%</td>
</tr>
<tr>
<td>Final firm</td>
<td>35</td>
<td>50.0</td>
<td>3,114</td>
<td>85.1</td>
</tr>
<tr>
<td>Sub-contractor</td>
<td>35</td>
<td>50.0</td>
<td>546</td>
<td>14.9</td>
</tr>
<tr>
<td>Total</td>
<td>70</td>
<td>100.0</td>
<td>3,660</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Source: Baracchi and Bigarelli, 2001

Table A.2 – The distribution of final firms by employees class (year 2000)

<table>
<thead>
<tr>
<th></th>
<th>POPULATION</th>
<th></th>
<th>SURVEY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N.</td>
<td>%</td>
<td>N.</td>
<td>%</td>
</tr>
<tr>
<td>0-49</td>
<td>24</td>
<td>68.5</td>
<td>461</td>
<td>14.8</td>
</tr>
<tr>
<td>50-249</td>
<td>7</td>
<td>20.0</td>
<td>692</td>
<td>22.2</td>
</tr>
<tr>
<td>>249</td>
<td>4</td>
<td>11.5</td>
<td>1,961</td>
<td>63.0</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>100.0</td>
<td>3,114</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Source: Baracchi and Bigarelli, 2001

Table A.3 – The distribution of sub-contractors by employees class (year 2000)

<table>
<thead>
<tr>
<th></th>
<th>POPULATION</th>
<th></th>
<th>SURVEY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N.</td>
<td>%</td>
<td>N.</td>
<td>%</td>
</tr>
<tr>
<td>0-9</td>
<td>11</td>
<td>31.4</td>
<td>50</td>
<td>9.2</td>
</tr>
<tr>
<td>10-19</td>
<td>15</td>
<td>42.9</td>
<td>196</td>
<td>35.9</td>
</tr>
<tr>
<td>>20</td>
<td>9</td>
<td>25.7</td>
<td>300</td>
<td>54.9</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>100.0</td>
<td>546</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Source: Baracchi and Bigarelli, 2001